Carbon nanoparticle surface functionalisation: converting negatively charged sulfonate to positively charged sulfonamide.

نویسندگان

  • John D Watkins
  • Ruth Lawrence
  • James E Taylor
  • Steven D Bull
  • Geoffrey W Nelson
  • John S Foord
  • Daniel Wolverson
  • Liza Rassaei
  • Nick D M Evans
  • Silvia Antón Gascon
  • Frank Marken
چکیده

The surface functionalities of commercial sulfonate-modified carbon nanoparticles (ca. 9-18 nm diameter, Emperor 2000) have been converted from negatively charged to positively charged via sulfonylchloride formation followed by reaction with amines to give suphonamides. With ethylenediamine, the resulting positively charged carbon nanoparticles exhibit water solubility (in the absence of added electrolyte), a positive zeta-potential, and the ability to assemble into insoluble porous carbon films via layer-by-layer deposition employing alternating positive and negative carbon nanoparticles. Sulfonamide-functionalised carbon nanoparticles are characterised by Raman, AFM, XPS, and voltammetric methods. Stable thin film deposits are formed on 3 mm diameter glassy carbon electrodes and cyclic voltammetry is used to characterise capacitive background currents and the adsorption of the negatively charged redox probe indigo carmine. The Langmuirian binding constant K = 4000 mol(-1)dm(3) is estimated and the number of positively charged binding sites per particle determined as a function of pH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction between Dipolar Lipid Headgroups and Charged Nanoparticles Mediated by Water Dipoles and Ions

In this work, a theoretical model describing the interaction between a positively or negatively charged nanoparticle and neutral zwitterionic lipid bilayers is presented. It is shown that in the close vicinity of the positively charged nanoparticle, the zwitterionic lipid head groups are less extended in the direction perpendicular to the membrane surface, while in the vicinity of the negativel...

متن کامل

The role of surface charge of ISCOMATRIX nanoparticles on the type of immune response generated against Leishmaniasis in BALB/c mice

Objective(s): ISCOMATRIX vaccines have now been shown to induce strong antigen-specific cellular or humoral immune responses to a broad range of antigens of viral, bacterial, parasite or tumor. In the present study, we investigated the role of ISCOMATRIX charge in induction of a Th1 type of immune response and protection against Leishmania major infection in BALB/c mice.  Materials and Methods:...

متن کامل

Charge-directed targeting of antimicrobial protein-nanoparticle conjugates.

Use of antimicrobial enzymes covalently attached to nanoparticles is of great interest as an antibiotic-free approach to treat microbial infections. Intrinsic properties of nanoparticles can also be used to add functionality to their conjugates with biomolecules. Here, we show in a model system that nanoparticle charge can be used to enhance delivery and increase bactericidal activity of an ant...

متن کامل

Modulation of Silica Nanoparticle Uptake into Human Osteoblast Cells by Variation of the Ratio of Amino and Sulfonate Surface Groups: Effects of Serum

To study the importance of the surface charge for cellular uptake of silica nanoparticles (NPs), we synthesized five different single- or multifunctionalized fluorescent silica NPs (FFSNPs) by introducing various ratios of amino and sulfonate groups into their surface. The zeta potential values of these FFSNPs were customized from highly positive to highly negative, while other physicochemical ...

متن کامل

Effect of surface charge of polyethyleneimine-modified multiwalled carbon nanotubes on the improvement of polymerase chain reaction.

In molecular biology, polymerase chain reaction (PCR) has played an important role but suffers a general problem with low efficiency and specificity. Development of suitable additives to improve the PCR specificity and efficiency and the understanding of the PCR enhancing mechanism still remain a great challenge. Here we report the use of polyethyleneimine (PEI)-modified multiwalled carbon nano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 18  شماره 

صفحات  -

تاریخ انتشار 2010